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Following the “Hyperspectral Imaging of Coastal Waters” workshop in Honolulu on May 
2018, the Alliance for Coastal Technologies (ACT, www.act-us.info) organized a coastal 
hyperspectral algorithm demonstration activity, in which participants were invited to 
participate in an algorithm round-robin using a hyperspectral image data sets from 
varying coastal environments (i.e., coral reefs, seagrass and harmful algal blooms) with 
available in-water validation data. Sponsored by the National Oceanic and Atmospheric 
Administration (NOAA)/US Integrated Ocean Observing System (IOOS), ACT and the 
participants convened for the “Coastal Hyperspectral Algorithm Demonstration 
Workshop” remotely on May 20-22nd 2020. The overarching goals of the workshop were 
to share progress updates from the individual teams and to facilitate a conversation 
around next steps for ACT. Focus was given to the potential for community publications 
on method considerations and best practices for Coastal Hyperspectral Remote Sensing.  
 

ALLIANCE FOR COASTAL TECHNOLOGIES 
 
One of the greatest challenges that NOAA faces in incorporating advanced technologies 
is bridging the Technology Readiness Level gap between developmental and operational 
instrumentation. Efforts dedicated to maturing observing technologies to operational 
readiness through rigorous and relevant testing, while simultaneously building user 
confidence and capacity, continue to be critical. Building on almost two decades of 
experience in facilitating the development and adoption of environmental observing 
instrumentation, the Alliance for Coastal Technologies (ACT, www.act-us.info), 
proposes to work in collaboration with U.S. IOOS Program Office and Regional 
Associations (RAs), IOOS federal and non-federal partners, local and regional resource 
managers, academic researchers, and the private sector to improve operational 
observation capabilities through the quantification of existing instrument performance, 
the introduction of new technologies, and enhanced communications. ACT’s mission is 
to foster the creation of new ideas, new skills, new technologies, new capabilities, and 
new economic opportunities in support of the sustained national IOOS.   
ACT was established by NOAA in 2001 to bring about fundamental changes to 
environmental technology innovation and research to operations practices. ACT achieves 
its goal through specific technology transition efforts involving both emerging and 
commercial technologies with the explicit involvement of resource managers, small and 
medium-sized firms, world-class marine science institutions, and NOAA and other 
Federal agencies. ACT’s core efforts are:  

1. Technology Evaluations for independent verification and validation of 
technologies, 

2. Technology Workshops for capacity- and consensus-building and networking, 
and 

3. Technology Information Clearinghouse including an online Technologies 
Database.  
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ACT is a leader in the evaluation of commercial and emerging ocean, coastal and 
freshwater sensing technologies. ACT’s Technology Evaluations employ an ISO/IEC 
17025:2017 compliant process to generate sensor performance data of known and 
documented quality through an open, inclusive, and transparent process that is responsive 
to the users’ operational needs. Evaluations focus on classes of instruments to 
demonstrate capabilities/potential of emerging technologies, provide unequivocal 
verification of performance specifications for commercial technologies, and/or provide 
validation of instrument operational qualifications that meet users or observing system 
requirements. Laboratory and field testing are carried out under reproducible, well-
understood conditions, which allows manufacturers to assess and improve components, 
configurations, and designs, as necessary. Since 2004, ACT has evaluated nearly 90 
sensors from 32 international companies. Results of ACT Technology Evaluations also 
have provided important insights to users on how to interpret data provided by in situ 
instrumentation and thus how to appropriately quantify various environmental 
parameters. The ACT Evaluations provide independent assurance that basic science 
understanding, forecasting, and management decisions are based on accurate, precise, and 
comparable observing data, while minimizing the risk of artifacts and problems 
associated with young technology. 
ACT Technology Workshops have addressed the capabilities of existing operational 
technologies (e.g., dissolved oxygen and salinity) and needs for new technological 
solutions to address specific global environmental issues (e.g., nutrients pollution and 
ocean acidification). Encouragement of the private sector as participants not only 
provides users with opportunities to better understand technology options, but also helps 
technology providers to better understand customers’ needs.  
The ACT Information Clearinghouse includes all Technology Evaluation and Workshop 
reports (as downloadable PDFs) and a stakeholder driven database that compiles and 
inventories information on observing technologies.  The Technology Database now 
connects users with over 400 companies and nearly 4,000 commercial instruments, which 
increases awareness of technology customers, users, regulators, and policymakers of 
available technology options. 
 
EXECUTIVE SUMMARY 

 
This workshop was organized and hosted by Alliance for Coastal Technologies (ACT) 
members at the University of Hawaii at Mānoa (UHM) and sponsored by the National 
Oceanic and Atmospheric Administration (NOAA)/US Integrated Ocean Observing 
System (IOOS) on May 20 – 22, 2020. A Technical Advisory Committee comprised of 
leading experts who use hyperspectral imaging in coastal waters [Dr. Steve Ackleson 
(NRL), Dr. Kyle Cavanaugh (UCLA), Dr. Heidi Dierssen (University of Connecticut), 
Dr. Michelle Gierach (NASA/JPL), Dr. Jonathan Kok (AIMS), Dr. Sherry Palacios 
(CSUMB), Dr. Blake Schaeffer (EPA)] assisted ACT [Dr. Margaret McManus (UHM), 
Mr. Daniel Schar (HIMB), Dr. Mario Tamburri (UMCES), Dr. Tom Johengen (Sea 
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Grant), Dr. Andrea VanderWoude (NOAA), and Dr. Eric J. Hochberg (BIOS)] in 
planning the workshop.  
 
The workshop was opened with welcome by Dr. Margaret McManus, who introduced the 
ACT and Technical Advisory Committee members. Further, the participating team 
leaders were introduced. This included: Wes Moses (NRL), Peter Gege (DLR Earth 
Observation Center), Luba Reshitnyk (Hakai Institute), Mike Sayers (MTU-MTRI). 
Additional guests participating were Tom Bell (UCSB), Susanne Craig (NASA), Stefan 
Plattner (DLR), Steve Lohrenz (UMass Dartmouth), and Clarissa Anderson (UC San 
Diego). It should be noted that due to the global pandemic this workshop was held online. 
In addition, due to the pandemic the progress of some teams was understandably delayed. 
The team leaders for these teams: Nima Pahlevan (NASA), Paul Gader/Susan Meerdink 
(University of Florida), and Rodrigo Garcia (UMass) will follow up later in the year. This 
report focuses only on the teams that were able to participate May 20-22, 2020.  
 
Following introductions, a brief review of the outcomes of the last ACT workshop on 
“Hyperspectral Imaging of Coastal Waters” that took place in Honolulu in May 2018 was 
given: The goal of the past workshop had been to examine present hyperspectral imaging 
technologies in coastal environments, to explore future requirements for hyperspectral 
imaging and to determine if it would be appropriate for ACT to undertake a 
demonstration of these technologies and data processing methods. The recommendations 
emerging from the 2018 workshop included a list of possible demonstration projects that 
ACT might undertake: 
 

1. An algorithm round-robin with outside participants using a hyperspectral image 
data set from varying coastal environments with available in-water validation data 
(i.e. harmful algal blooms, corals, kelp beds etc.). 

2. Mooring calibration/validation of hyperspectral remote sensing with a set of 
hyperspectral optical sensors deployed on moorings along with coincident 
flyovers with a hyperspectral imager(s), (partnering with IOOS). 

3. Controlled mesocosm(s) tank experiments with a suspended boom to ‘fly’ 
manufacturers hyperspectral imagers over the tanks to show the imagers 
capabilities.  

4. Flight comparison with a sensor like PRISM (Portable Remote Imaging 
Spectrometer) as a standard.  

 
Dr. Eric Hochberg (Bermuda Institute of Ocean Sciences/ACT) then introduced 
overarching goals of the three-day May 20-22, 2020 ACT workshop:  
 

1. To exchange details on progress, data validation, lessons learned and possible 
future collaborations among participant teams that have been working since June 
of 2018 on this demonstration project. 

2. To discuss the potential for community publications on method considerations 
and best practices for Hyperspectral Remote Sensing.  
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On the first and second day of the workshop, each of the teams presented their work and 
addressed the following in their team presentations:  
 

1. Brief overview of study area and datasets used 
a. What was the application objective? 
b. What data were used, both remote sensing and otherwise?  

2. Algorithm applied (including any preprocessing corrections if needed)  
a. What was the processing/analytical approach? 
b. What was the validation approach?  

3. Results – Mapped products and graphical results of the validation  
a. Was the objective met?  
b. What were accuracy/uncertainty levels (quantitative or graphical)?  
c. What worked well with respect to the data and approaches? 
d. What challenges and limitations were encountered? Overcome?  

4. Next steps (including the potential journal for submission)  
a. What are some recommendations to improve the data set, processing, and 

validation?  
b. Do you want to be part of a community paper(s)?  
c. Is there anything else to cover?  

 
Presentations were grouped by data set: coral reefs, seagrass and harmful algal blooms 
(HABs). Each group of talks was followed by questions and a group discussion. On the 
second and third days of the workshop, a detailed outline for community publications on 
method considerations and best practices for coastal hyperspectral remote sensing was 
established and reviewed. Further, next steps for ACT in the upcoming 1-2 years were 
presented by Dr. Mario Tamburri including plans for an in-person workshop in Hawaii 
and a vendor demonstration in the Great Lakes in 2021. 
 
GROUP PRESENTATIONS – CORAL PROJECT DATASET 

 
A Spectral Optimal Estimation Approach for Retrieving Bottom Characteristics in 
Shallow Water Environments – Dr. Wesley Moses (Naval Research Laboratory, 
Washington, D.C., USA) 
 
The goal of this work was to test an optimal estimation (OE) approach for retrieving 
multiple biophysical parameters of shallow waters using hyperspectral imaging data. OE 
is  (1) based on the physics of radiative transfer; (2) capable of exploiting spectrally rich 
information; (3) computationally fast without compromising accuracy; (4) globally 
applicable, with limited need for local adjustments/re-parameterization; and (5) able to 
account for and provide estimates of uncertainties in retrievals. 
 
The measured remote sensing signal is expressed as a function of various optically 
relevant variables that contribute to the measurement and perturbation in the signal due to 
measurement uncertainties:  
Measured Signal, y = f(x) + ɛ,  
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where x is a state vector consisting of optically relevant variables related to the 
atmosphere (aerosol type, aerosol optical thickness, etc.), water column (concentrations 
and absorption/scattering coefficients of optically active materials in water), and bottom 
(bottom depth and bottom type); ɛ is a measure of uncertainties in the measurement. 
 
OE is a statistically rigorous method that exploits spectral information, taking into 
account prior estimates of x as well as uncertainties in measurement. The theoretical 
robustness, the effectiveness in using a priori information, and error analysis are 
advantages of this approach. Disadvantages are the need for judicious selection and 
parameterization of the forward model, the intensive and time-consuming computational 
labor, and the challenge of operational pixel-by-pixel implementation on a satellite 
image. We also explored a computationally less time-intensive approach that classifies 
the image into numerous classes of spectrally similar pixels and subsequently applies the 
algorithm to each class, as opposed to every pixel. 
 
This study used PRISM data from Heron Reef, Australia, acquired on 16/17 September 
2016 as part of NASA’s Coral Reef Airborne Laboratory (CORAL) mission. The focus 
of the retrievals was on bottom depth and bottom type (coral, turf algae, and coral sand). 
We used atmospherically corrected data and assumed predetermined constant values 
across the whole image for concentrations of optically active constituents in the water 
column (chlorophyll-a, colored dissolved organic matter, and suspended particulate 
matter). The purpose of fixing constituent concentrations at predetermined, low constant 
values was to reduce the degrees of freedom in the retrieval and enable a quicker and 
more robust retrieval of bottom characteristics. This was deemed reasonable given that 
the images were from clear, shallow waters. In addition, we also applied OE by allowing 
the constituent concentrations to vary within narrow ranges and retrieving them along 
with bottom characteristics.  
 
Two radiative transfer models were considered: Hydrolight-Ecolight and a simple 
Shallow Water Radiative Transfer (SWRT) model (Ackleson et al. 2017). The algorithm 
was applied in two ways, first to the whole image and then to specific pixels 
corresponding to in situ measurements. For the former case, the image was pre-classified 
into 70 classes, with the classification parameters set to result in spectrally tight classes 
that altogether represent the overall variation in the image but individually have minimal 
within-class variation. OE was applied to representative spectra from each class instead 
of each individual pixel in the image, and the biophysical parameters retrieved from each 
representative spectrum were assigned to all pixels in the corresponding class. This is 
based on the assumption that pixels with similar spectral properties likely contain similar 
biophysical properties and obviates the need for applying OE on a per-pixel basis for the 
whole, thereby saving significant computational time. The classification also enabled 
easy identification and removal of pixels not relevant to bottom retrievals (cloudy, 
terrestrial, and optically deep). Separately, OE was applied exclusively to pixels with 
corresponding in situ measurements for the purpose of direct comparison. There were 32 
pixels with corresponding in situ measurements. 
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For the PRISM data used in this 
study, OE retrievals of bottom 
characteristics based on SWRT 
were more accurate than those 
based on Hydrolight-Ecolight. A 
direct comparison of SWRT-
based OE retrievals of bottom 
type with in situ measurements 
for the 32 pixels showed a 
bottom type detection accuracy 
of 78.125%. Applying OE to the 
entire image after pre-
classification resulted in a slight 
decrease in the bottom type 
detection accuracy, at 68.75%. 
The decrease is understandable 
because, in this case, OE is not 
applied to actual reflectance 
spectra of pixels corresponding 
to in situ stations but to 
representative spectra from the 
classified image. Retrievals based 
on Hydrolight-Ecolight fared 
worse for both cases, with accuracies less than 50%. Analysis of the results showed that 
erroneous bottom type detections were mostly due to confusion between coral and turf 
algae bottoms. There was some sensitivity to water column properties. Knowledge or in 
situ measurements of absorption/scattering properties of the water column and constituent 
concentrations would help improve accuracy. Retrieved bottom depths compared 
reasonably well with in situ measurements. Though the comparison of absolute depths 
was not remarkable, the relative variations in depth were captured quite well. 
 
In summary, the optimization approach generally yielded reasonably accurate retrievals 
of bottom characteristics. Further, the simple SWRT model was much faster to execute 
and generally yielded a higher accuracy. It appears that rigorous models such as 
Hydrolight-Ecolight are very sensitive to parameter initialization. Optimization-based 
approaches hold promise, but accurately retrieving multiple parameters requires reliable 
ancillary data. Next steps would be to (1) use data from other available sources to get as 
much a priori information as possible to constrain the retrieval; (2) use information on 
PRISM’s radiometric characteristics and SNR to model uncertainties in retrievals; (3) 
revisit PRISM atmospheric correction based on in situ Rrs; and (4) apply the algorithm to 
in situ Rrs to test retrievals. 
 
 
 
 
 

Figure 1. Left: A PRISM image of Heron Reef; Right: 
Bottom types retrieved using SWRT as the forward 
radiative transfer model; the percentages annotated are the 
percent coral cover measurements from in situ data. 
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Questions and Answers Specific to the Presentation:  
 
Q. Were there any issues with geolocation accuracy? 
A. There was some inaccuracy with the first image (as pointed out by Eric Hochberg, 

this may have possibly contributed to problems with results from the first image). 
Other images appeared to be fairly accurately geo-located, based on comparison with 
Google Earth.  

 
Q. Did you calculate the time savings by initially parsing the data out as opposed to 

going in every pixel within the image? 
A. The parsing of the data into classes took about 45 minutes. Using Hydrolight takes 2 

minutes for a single spectrum. A simpler model makes it possible in 5-10 seconds. 
With the pre-classification approach, OE needs to be applied to only 70 pixels (or 
however many classes one decides to classify the image into), whereas with the per-
pixel approach OE would have to applied to all pixels in the image, which, for a high-
resolution image, could be more than a million. Thus, even when using the simpler 
model, it would take several days to process a single image on a per-pixel basis. The 
pre-classification approach significantly cuts down the processing time and keeps it 
within operational limits, with only a marginal reduction in accuracy.  

 
Q. Why do you think the computational time and expense between these two models is 

so different? Presumably these models should not be so far apart. 
A. I agree that the results were surprising. The difference in computational time is 

simply due to the difference in the time it takes for each model to run once. 
Hydrolight-Ecolight is more sophisticated than SWRT, takes into account more input 
parameters, and takes longer to run. The difference in accuracies might have to do 
with how the parameters were set up. Additional tests are needed to examine the 
impact of certain default settings in Hydrolight-Ecolight. Measurements of inherent 
optical properties of the water column would help do a more direct comparison 
between the results from these two models.  

 
Q. What was the chlorophyll range? 
A. Presuming that coral waters were rather clear, I set the range low around 0.02. 
 
Q. How did you parameterize the backscatter in Hydrolight? 
A. I chose the calcareous sand as sediment type and start values from Hydrolight.  
 
 
Dr. Peter Gege – DLR Earth Observation Center, Processing of Hyperspectral 
PRISM Imagery Data in the Heron Coral Reef Using WASI-2D  
 
The primary goals of this work were to (1) adapt the Water color simulator (WASI-2D) 
(download: https://ioccg.org/resources/software/, Gege 2004, Gege and Albert 2006) to 
coral reef environment; (2) derive quantitative information about water quality, water 
depth and benthic cover from hyperspectral PRISM imagery; and (3) assess and validate 
the quality of the derived parameters and evaluate the challenges of using these 
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technologies in coral reef environments. CORAL/PRISM hyperspectral images (crops 
from 3 flight strips covering Heron Reef; provided by Eric Hochberg) were used as data. 
 
About WASI: The water color simulator (WASI3) has been developed for the simulation 
and analysis of spectral parameters in water (𝑎,	𝑅rs,	𝐸d,	𝐿u,...). It presents an analytical 
model of downwelling irradiance and includes a number of bio-optical models for deep 
water and shallow water. Further, WASI contains an elementary data base of SIOPs, 
bottom substrates and atmospheric absorbers. WASI is physically traceable and includes 
transparent calculation steps. 
 
Information on the bio-optical model used: 

 
 
In order to provide representative input data for bio-optical model of shallow water such 
as coral reef environments, we set the following aims: (1) avoid spectrally similar albedo 
as inversion cannot distinguish these; (2) minimize the number of substrates in order to 
reduce ambiguity issues; and (3) cover the range from 400 – 830 nm for depth below 1 m. 
We removed spectral similarities and reduced the dataset from 11 mean spectra in the 
range 400-700 nm to 6 spectra with large differences in spectral shape. Due to the 
spectral ambiguities, spectra covering an extended range of 400-830 nm were used to get 
a reliable inversion.  
 
Examination of how spectral range affects fit resulted in the following conclusions: (1) 
each fit parameter reacts differently to ignoring the near infrared (NIR) spectral range; (2) 
the induced changes cannot be attributed solely to the spectral range; they are also related 
to the sensitivity of a parameter on error propagation; (3) CDOM, seagrass, red algae and 
coral brown react too sensitively to draw clear conclusions on the impact of the spectral 
range; the scatter plots are quite noisy with related r2 below 0.62; and (4) sand, water 
depth and TSM are the most stable parameters with r2 > 0.85.  

 
An examination of how many and which parameters should be fitted by changing the 
number and type of fit parameters concluded in the selection of 9 parameters: (1) 
phytoplankton concentration (green algae); (2) total suspended matter concentration; (3) 
CDOM concentration; (4) water depth; (5) fraction of sand; (6) fraction of seagrass; (7) 
fraction of red algae; (8) fraction of brown coral; and (9) fraction of sun glint. 
Phytoplankton fit results (consistent between 3 images) were in good agreement with in 
situ data above 0.5 mg m-3 but underestimated chlorophyll concentration inside the reef. 
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Total suspended matter (TSM) fit results (consistent between 3 images) were in fair 
agreement with the in situ data (their uncertainty was in the order of 100% and their 
spatial variability was very high) and quite variable inside the reef. CDOM fit results 
(different between 3 images) were too low inside the reef (frequently zero) and in no 
correlation with the in situ data. Further, the inversion failed in determining CDOM. 
Unleveled seafloor and variable water level (tide, waves) caused water depth fit results 
(consistent between 3 images) to be difficult to validate. Nevertheless, they were in 
reasonable correlation with the in situ data considering sea floor topography and tides 
with the best correlation found for depth below 4 m. Sand fit results (highly consistent 
between 3 images) were in some correlation with in situ data; the fit tends to overestimate 
at low sand cover (mainly at water depths > 10 m). Seagrass fit results (consistent 
between 3 images) were locally highly variable and in no correlation with in situ data of 
algae cover (no validation data for seagrass available). It later became clear that there was 
no seagrass in the area and highlighted the importance of running the algorithm with 
realistic input spectra, if the environment is not well known. Algal cover fit results 
(similar between 3 images) were locally highly variable and in minor correlation with in 
situ data of algae. Similarly, coral fit results (consistent between 3 images) were locally 
highly variable and in some correlation with in situ data. See coral validation graph 
below in Figure 2 and images in Figure 3). 
 
 

 
 
 

 
 
 
 
 
 
 
 
 

Figure 2. Coral cover in situ vs. Coral brown cover from fit. 
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In summary, we found PRISM data 
quality to be excellent. It provided a 
complete data set that was perfect for 
algorithm development and validation. 
WASI software was easy to adapt to the 
new environment. Communication with 
collaborators Heidi, Eric, Steve and 
Stefan was timely, smooth and extremely 
helpful!  
 
Some of the challenges and limitations 
encountered included: (1) The coral reef 
environment is optically very complex 
and introduces ambiguities to the 
reflectance spectra. To overcome this 
challenge, input database (benthic albedo) 
and fit settings (spectral range, number 
and type of fit parameters, initialization, 
spectral weighting) were optimized. (2) 
Spectral range of substrate spectra was 
too narrow. This was solved by, replacing 
the spectra with similar spectra from other 
sources. (3) Georeferencing of one image 
was off by 115–140 meters. To solve this 
problem, the image was manually moved 
and rotated in ENVI until reef edges 
matched the Google Earth image. (4) Tidal effects make bathymetry validation 
challenging. Water level records of Heron Island, interpolation of data with a cosine 
function, and correction of PRISM and in situ data proved helpful. (5) Computation time 
of WASI was very long (13-33 hours per cropped scene). Patience and 3 computers were 
needed.  
 
As a next step, an overview of the available data and project members with information 
on the data sets that are being analyzed would be useful. For publication, a more detailed 
data analysis would be necessary including the extension of statistical meta-analysis of fit 
comparison, the exclusion of deep-water pixels for shallow water parameters, and the 
consideration of water depth, georeferencing uncertainties and bottom topography in the 
validation. We would also be happy to contribute to a collaborative community paper. 
 
Questions and Answers Specific to the Presentation: 
 
Q. Have you thought about integration of your model and the classifications with a 

reduced band set to show the true influence of hyperspectral vs. multispectral 
capabilities? 

A. Running the model with a reduced number of bands does not save too much 
computation time. The difficulty here is the selection of the best weighted bands: 

Figure 3. Coral cover. 
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Coral reef environments hold information at every wavelength. As a result, you 
unavoidably lose some information when reducing bands. An alternative is to do 
work with multispectral sensors, but we would have to look at the simulation to 
understand the exact differences. It would be relatively easy to resemble the PRISM 
data, run the same inversion on the resembled data and check the differences. It 
would also be helpful to take PRISM data and construct SPG data to examine if there 
is any loss in information.   

 
Q. What does the infrared help with other than the sunglint? 
A. My approach to correct for the sunglint is to do the inversion simultaneously with the 

inversion of the water body and the seafloor. That means I need applicable data in the 
model. It turned out that this sunglint correction works better if you separate it from 
next steps. Standard approaches also rely on infrared signal. However, if infrared is 
affected by sea floor in shallow waters (< 1 m depth), the algorithm might assume 
that the water is black resulting in the signal measured from the surface. For remote 
sensing of water depth < 1m the infrared and also bottom coverage should be 
included. 

 
Q. Did you do any confusion matrix to check the performance of your algorithm? 

Further, you used a lot of categories. Seagrass showing up shows that it is being 
incorrectly detected when it really was something else (as we know that there is no 
seagrass there). Did your approach mix categories? 

A. I made correlation plots that compare different runs with different fit settings but did 
not do a confusion matrix. My approach mixed categories. I fitted four bottom 
substrates simultaneously and included the seagrass spectrum, because I thought there 
might be seagrass. There is mixing of the classes, otherwise seagrass would have 
shown 0 (there is no seagrass in the environment). Nevertheless, I got a relatively 
good fit despite the input spectrum being used.  

  
Q. Do you think some of the benthic absorption went into the water color?  
A. It is important to understand the sensitivities of error propagation. I have never used 

so many fit parameters simultaneously, so it may be a problem of overfitting that 
causes spectral ambiguities. It is possible to get similar reflectance spectra using very 
different parameter combinations. Chlorophyll has been underestimated inside the 
reef. This error then propagates to errors of the other parameters. Wesley Moses used 
a reduced number of fit parameters (four parameters) making the image less noisy. 
Possible approaches to minimize parameters are to treat deep and shallow water 
separately. That would allow reduction of at least one or two parameters and make 
the retrieval of benthos more robust.  

 
Q. How did you come up with 9 parameters being the best number? 
A. I just ran an inversion of the entire image and used the residual and spectral angle 

maps to look where I got the better correspondences of the fit and measured curve. I 
used these two parameters to assess the validity of the fit for the entire image. I tried 
to minimize the differences across the image of the residual and the spectral angle. 

 



September 2020 
                  ALLIANCE FOR COASTAL TECHNOLOGIES  

 
         

 
 

13 

 Spectral weighting: Spectral weighting means to do an inversion that weights certain 
bands higher. If you are interested in a certain parameter, you can tune the fit so that 
it retrieves that parameter better than if you would weigh them equally. This approach 
was used to derive bathymetry: I weighted channels higher that are more sensitive to 
water depth than others.  

 
 
GROUP PRESENTATIONS – ELKHORN SLOUGH DATASET 

 
Hakai Institute, Luba Reshitnyk, MSc.  

The primary objective of this work was to apply methodologies for extracting seagrass 
extent from hyperspectral imagery (AISA Fenix) collected at Sidney Spit, British 
Columbia, Canada (O’Neill et al. 2013) to hyperspectral imagery (PRISM) collected in 
Elkhorn Slough, California, USA (Dierssen et al., 2019). These methodologies included 
(1) land masking, (2) removal of spectral reflection (deglinting), (3) generating image 
derivatives and (4) testing supervised classification algorithms. In this demonstration we 
asked – can methods developed for mapping eelgrass extent (in this case, Sidney Spit) 
translate to other coastal areas (Elkhorn Slough, CA)?  

1.  Context for ACT participation 

The Hakai Institute is a non-profit charity research organization based in British 
Columbia (BC), Canada whose research focus is the study of coastal ecosystems 
including canopy-forming kelp and seagrass beds. Mapping coastal habitats along the BC 
coasts using optical remote sensing methods is challenging. The vast coastline is complex 
and remote, experiences large tidal exchanges (3 – 5 m) and experiences high cloud 
cover. To overcome these challenges, the Hakai Institute has launched the Airborne 
Coastal Observatory (ACO) – an aerial platform housing multiple sensors including lidar, 
high-resolution cameras and an AISA Fenix hyperspectral sensor. Hyperspectral data is a 
newer realm of research for Hakai and the opportunity to join the ACT algorithm 
demonstration presented an opportunity to (1) apply established methodologies with 
existing datasets and (2) collaborate with the larger coastal hyperspectral research 
community.  
 
For this activity, we took previous analytical approaches developed by O’Neill et al. 
(2013) to determine the extent of seagrass from data collected at Elkhorn Slough. Prior to 
analysis, we compared the site and water characteristics between the two study sites to 
assess whether we could anticipate the O’Neill methods developed at Sidney Spit, BC, 
performing well for the Elkhorn Slough dataset. The Vierra bed (Elkhorn) showed nearly 
double the concentration of chlorophyll-a and higher colored dissolved organic material 
(CDOM) absorption when compared to Sidney Spit; however, total suspended material 
(TSM) was largely comparable between locations. Overall, concentrations of optical 
constituents were more comparable than expected. Differences in contrast between 
eelgrass and sediment presented a potential confounding issue (bright sand at Sidney Spit 
compared to dark grey sediment at Elkhorn Slough). At Sidney Spit, the conditions 
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(turbidity) on the acquisition day allowed optical separation of eelgrass to a depth of 7.5 
m. At Elkhorn, the deepest bed (Vierra) is between 2.0 – 4.5 m depending on the tide. 
The bed depth during imagery acquisition was approximately 3 m (collected at high slack 
tide of 1.49 m above MLLW). We anticipated that the shallower depth of the Elkhorn 
data should increase classification accuracy.  
 
The data we used were atmospherically corrected Elkhorn Slough Vierra Bed PRISM 
data (July 2013) with 1 m resolution. In addition, we were provided with diver field 
measurements of Z. marina percent cover (Aug. 2011/13) for data validation. O’Neill et 
al. (2013) achieved the highest level of eelgrass classification through the following 
image processing and classifications steps: atmospheric correction, surface glint 
correction, deep water masking and a maximum likelihood classifier using four key 
bands unique to eelgrass – slope 500 – 530 nm, first derivatives of 556 nm, 580 nm, and 
602 nm. For the ACT demonstration, we modified the methods from O’Neill et al. 2013 
to suit the parameters of the data provided. Specifically, a deep-water mask was not 
applied due to the lack of bathymetric data. Given the shallow nature of the site, this step 
was deemed unnecessary. A flowchart of the image processing steps is presented in 
Figure 4, and a detailed description is provided in the following text. 

 
Figure 4. Image processing steps. 

Landmasking was conducted based on a threshold (1.01 µm). Deglinting was conducted 
following Hedley et al. (2005) and performed very well (Figure 5). Image analysis was 
completed in ENVI, and the reduced variable data set for slope and the four key spectral 
derivatives (Bands s500-530, R′566, R′580, R′602) were derived (s = slope, R′ = 
derivative). The derivative at R′602 did show more noise and including it in the 
classification resulted in degradation of quality. As a result, it was left out to retain the 
other three primary inputs. In testing different supervised classifications, using the diver 
data, a 3×3 pixel sampling area was established over each specific point location. A 
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median 3×3 filter was applied to the classification results. The best classification results 
were achieved with the Mahalanobis Distance and Maximum Likelihood algorithms 
(Figure 6). Both algorithms detected additional eelgrass in the upper intertidal, potentially 
indicating the presence of green algae. However, without in situ ground validation, that 
remains unconfirmed. Overall there was good visual agreement between a grayscale band 
at 550 nm and the results from Dierssen et al. (2019)  paper.  

 
Figure 5. Glint correction example in a portion of heavily glint affected optically deep water in 
the PRISM image. Top panels: True color PRISM imagery before and after glint correction. 
Bottom: an image profile showing Rrs at 550 nm (upper blue line), 670 nm (middle green line) 
and 750 nm (lower red line) before and after glint correction.  

We were successful at visually delineating seagrass using this method and found that the 
methodology adapted from O’Neill et al. (2013) was applicable to mapping the extent of 
seagrass from Elkhorn Slough. From a participation perspective, the project was 
manageable in structure and scope and was informative in the application of derivatives 
for future work. Some of the challenges and limitations included positioning errors and 
the limited quantification of accuracy.  
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Figure 6. Top right panel: Diver data of eelgrass training and validation data at Vierra Bed. All 
other panels show classified eelgrass (pink) from supervised classification algorithms. 

Next steps could include correcting for the positional ground-truth discrepancy and 
applying and testing a water correction method on other available datasets (e.g., 
bathymetry). Further, we have the opportunity to do field work at our field station in 
British Columbia in summer 2020 and will be planning a low tide hyperspectral 
overflight. The aim is to develop a method for conducting updated inventories for coastal 
habitat classes in this area, leveraging hyperspectral systems. We are currently 
investigating the radiometric calibration methods that we want to apply and are interested 
to maintain a dialogue with the group about the work done in the past and opportunities 
to learn. A publication is currently not anticipated from this work. However, if there is 
any aspect of our work that relates to a community paper, we would be more than happy 
to contribute. We are looking forward to learning more information about practices for 
benthic classification. Thank you for the support from the group and especially to Heidi 
Dierssen. 
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Questions and Answers Specific to the Presentation: 

Q. Are you planning to do water column collection for validation? 
A. We are planning to do water column data collection. Generally, we are trying to get 

as much data as we can while we have the opportunity. We are thinking carefully 
about what data we are able to collect and how to collect it. We hope that the weather 
will permit field data collection, while we get the overflight.  

 
Note: British Columbia is a difficult location for mapping. We definitely have the benefit 

of strong knowledge of this area including high resolution bathymetry. However, we 
lack spectrally consistent signals across the coast because it is so remote. We are 
wondering about the best practices when it comes to this? We have thought of flying 
low and slow to maximize spatial resolution. We anticipate 2-3 m of resolution to 
target more broader classes rather than specific species by using another remote 
sensing data set, we are hoping to build a spectral library for these classes. 

 
GROUP PRESENTATIONS – LAKE ERIE HABS DATASET 

MTU-MTRI, Dr. Michael Sayers  

This work utilized ocean color sensors for bio-optical modeling to examine at annual 
trends of bulk chlorophyll abundance in Lake Erie. The goal was to explore how we can 
extend our bio-optical approach (or semi-analytical algorithm) to hyperspectral data and 
improve components such as community composition and abundance in different 
pigments, etc. Careful thinking about parameterization of the model and the specific 
optical properties that we use (spectral shape of our phytoplankton absorption 
coefficients, CDOM absorption, slopes, etc.) was required. Data limitations in Lake Erie, 
such as in phytoplankton absorption spectra laboratory aph partition data, raise the 
question of how to best parametrize the model with the data available. Particulate 
Absorption, ap, data from an ac-s spectrophotometer deployed in Lake Erie since 2015 
(data collection is continuing at eight stations on a weekly basis) are available. This data 
set allows—along with CDOM absorption—determination of aph spectra. The questions 
that we asked were: Can we use the shape of ap spectra to parametrize our bio-optical 
model to retrieve aph? If we have ap, how can we decompose useful information out of aph 
looking at the spectral space?  
 
The available data set allows us to create a set of optical properties with a given 
reflectance type profile. I have explored reflectance data, optical water types, assigning 
reflectances into categories, and the optical properties we have measured in each 
category, as well as summarizing those statistically (Figure 7). If we can take a pixel 
from an image and compare it to our optical water type library, we have an 
accompanying set of optical properties and can parametrize the model. Our approach 
seems promising: I have looked at all the in situ data (2015, 2016) to generate statistical 
models and have also applied the data to more recent years (2017, 2018) as an 
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independent validation on the in situ data. I have managed to retrieve aph with a robust 
result on the in situ reflectance. 

 
Figure 7. Normalized remote sensing reflectance clusters from in situ radiometric measurements 
made in Lake Erie in 2015 and 2016. 

Next steps are to start applying our approach to the imagery. In order to do that, good 
atmospherically corrected data are crucial. We are planning to investigate using empirical 
correction methods and radiometry from a very nearby dark parking lot target, which 
could be corrected for the aircraft model and applied to the model. We are also working 
on a document with project updates that will be distributed in the near future. We greatly 
appreciate any technical advisory and feedback from the group. We would be more than 
happy to contribute to a community paper comparing methodologies and best practices.  
 
Questions and Answers Specific to the Presentation: 
 
Q. Do you have any recommendations around things that you have been doing that 

might benefit others at the moment? 
A. A few things: Dealing with semi-analytical type models, it is very important to be 

mindful of the collection and making sure that the reflectance data used is clean. It is 
difficult to entirely remove the surface effects, but we have done a relatively good job 
here. For aircraft observations, it is important to remove all of the surface 
contamination from our pixels. An important question to ask is how do we come to a 
standard on our reflectance product from airborne imagery.  
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PUBLICATION DISCUSSION  

Three categories of publications were discussed: 

1. ACT report, comprising a description of the overall program with summaries of 
presentations from CORAL, Elkhorn Slough, and Lake Erie including objectives, 
methods, results, challenges, benefits, and recommendations. Further, it was 
discussed to include a write up that reflects the ACT demonstration process: Was 
it effective? How did teams benefit from participating? Was this approach useful 
for advancing new technology? This contribution is that report. 

 
2. Individual team publications  
 
3. Community papers:  

a. Method Consideration for Hyperspectral Remote Sensing of Benthic Habitats 
b. Method Consideration for Hyperspectral Remote Sensing of Water 

Quality (HABS) 
c. Best Practices for Use of Hyperspectral Imaging in Coastal Environments  

Led by Professor Heidi Dierssen (University of Connecticut), a detailed outline for the 
Benthic Methods community paper was established and discussed (outlined below). 

Note: We hope to produce a companion manuscript that reflects the HABS work, as well. 
We understand that because of COVID-19 some of the HABS work has been delayed. 

Methodological Considerations for Hyperspectral Remote Sensing of Benthic 
Habitats 

1. Introduction 
1.1. Overview of project 
1.2. Approaches  

1.2.1. Forward models (Moses) 
1.2.2. Inversion models (Gege, Garcia, Hochberg, Dierssen) 
1.2.3. Tuned empirical algorithms (Reshitnyk, Dierssen) 

2. Image Quality 
2.1. Atmospheric correction (similar methods used for Elkhorn and Heron with 

Thompson model) and comparison plots to field Rrs. Empirical secondary 
correction may be needed and basic steps for that. 

2.2. Geocorrection. Challenges and correction by all group with known ground 
control points 

2.3. Tidal corrections 
2.4. Residual glint correction 

i. How it appears in the data and fixes (most did this?) 
ii. Luba has figures of before and after for Elkhorn using Hedley et al. 
iii. Dierssen has cross-track algorithm for PRISM 

2.5. Spectral smoothing? – which techniques were done if any? 
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2.6. Image artifacts – Reshitnyk showed at 600 nm in Elkhorn Slough 
3. Benthic Reflectance Libraries 

3.1. Brief mention of benthic classes used (Hochberg and Gege reducing class 
numbers based on spectral similarity) 

3.2. Methods vary from using a mean representative (Moses) to selecting from a 
probability distribution (Garcia) 

3.3. Expanding spectra into NIR   
3.3.1. Gege’s analysis of expanding 400-700 to 400-830 nm 

4. Image Pre-Classification 
4.1. Optically deep vs. optically shallow detection 
4.2. Supervised classification (Moses) 
4.3. OBIA methods? 

5. Selection of Endmembers and Fit Parameters  
5.1. Fit parameters  

5.1.1. Bathymetry and measures of pathlength  
5.1.2. Water column (Dierssen)  
5.1.3. Benthic habitat (Hochberg) 

5.2. Garcia lookup table classification approach to select benthic endmembers 
5.3. Number of fit parameters – 

5.3.1. Gege analysis on parameter no.  (residuals and spectral angles) 
5.3.2. Degrees of freedom and non-unique solutions 

6. Spectral Range and Weighting 
6.1. Impact of NIR in retrievals (Gege) 
6.2. Spectral weighting for different habitats 

6.2.1. Reshitnyk seagrass weighting 500-530 nm 
6.2.2. Garcia weighting for coral? 

7. Radiative Transfer Solutions 
7.1. Simplified solutions – Gege, Garcia 
7.2. Hydrolight-Ecolight – Moses (challenges in parameterization). 

8. Inversion Solutions 
8.1. Setting initial conditions  
8.2. Leven. Marq. Methods 
8.3. WASI method 

9. Algorithm Performance  
9.1. CPU time – all methods from 33 hours to minutes 
9.2. Use of ideal endmembers  

9.2.1. Seagrass leaf for canopy, coral without 3D 
9.2.2. 3D canopies 
9.2.3. Detrital matter obscuring benthos 

9.3. Common Misclassifications 
9.3.1. Classes not present -- Seagrass in Heron Isl. 
9.3.2. CDOM vs. glint 
9.3.3. Phytoplankton Chl vs. benthic vegetation 
9.3.4. Seagrass vs. macroalgae 
9.3.5. TSM (bbp) vs. seagrass leaf endmember 

9.4. Mixed pixels 
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9.4.1. Presence/absence approaches 
9.4.2. Fractional models 

9.5. Propagation of uncertainty 
10. Validation of Products 

10.1. Challenges with co-location 
10.1.1. GPS accuracy 
10.1.2. GPS locations underwater (methods) 
10.1.3. Path length effects for bathymetry 
10.1.4. Index of refraction correction 

10.2. Homogeneity of the area being classified  
10.2.1. Percent cover – what do they mean, distribution)  
10.2.2. Assessing homogeneity with a radiometer buoy 

10.3. Environmental influences  
10.3.1. Waves 
10.3.2. Measurement interference 

10.4. Recommendations 

 
Comments made during the discussion:  

1. We might want to include parametrization of the bottom as a subsection. Bottom 
parametrization was a big aspect in the CORAL mission. 

2. We might want to include a subsection under image quality addressing sensor 
noise. 

3. A section addressing tradeoffs would be useful:  e.g., as we go into deeper water, 
the information in the water column becomes more apparent and information 
from the benthic community becomes less apparent. Uncertainty shifts from the 
water column to the seafloor. As the water becomes shallower, the opposite 
occurs. Where we are in the shallow water environment can greatly affect the 
optical properties of the water. As a consequence, if optical properties are coupled 
and the water is shallow, the information about the water column has high 
uncertainty compared to the bottom.  

4. We could also address analysis based on sensor quality: Which retrievals are 
reasonable to attempt and which are not feasible due to lack of information in the 
data.  

5. Would this publication address mission planning for airborne campaigns, e.g., 
how to conduct overall planning, identify important mission aspects, flight line 
planning, field validation? It is important to discuss best practices in data 
collection upfront versus trying to apply models with insufficient or inappropriate 
data. 

a. Likely a second paper to address these Best Practices. This main focus of 
this paper is on the processing of the datasets/imagery we had.  

b. A Best Practice paper could follow on and be more prescriptive. It could 
have a tropical and a temperate example. It also may be useful for coming 
users of remote sensing data who are planning to collect their own data.  

6. Lessons learned about validation: 
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a. There is a need for meter-level accuracy in georeferenced data. This applies 
particularly to mixed heterogeneous habitats. 

b. Tides affect airborne imagery and it presents a challenge to correct for tidal 
effects. 

c. Classification of homogeneity is useful (mean and distribution of 
percentages; minimize variance help assess homogeneity). 

d. Understanding of the actual target being assessed (seagrass leaves etc.) is 
important. 

e. 3D influences vertical variability in reef and kelp beds (Heidi publication).  
7. Professor Dierssen has a special working group to produce a report specific on 

benthic reflectance measurements and estimates. This comprises partly basic 
sciences as well as an overview on measurement theory and methods for 
estimating benthic reflectance and best practices that could be useful for a 
community paper.  

Note: If applicable, suggestions made during the group discussion were integrated 
into the revised outline above. 

Best Practices for Use of Hyperspectral Imaging in Coastal Environments 
(leveraging with other groups in a technically reviewed report/document): 

Led by Dr. Andrea VanderWoude (NOAA) and Dr. Eric Hochberg (Bermuda Institute of 
Ocean Sciences), a detailed outline for the Best Practices community paper was 
established and discussed. The goal was to identify a framework and outline of sections 
for an overarching Best Practices guide.  

1. Introduction 
1.1. Document targeted airborne and drone data 

2. Glossary of Key Terms 
3. Description of Hyperspectral Processing Flow  
4. Person Power Needed to Accomplish Goals  
5. Defined Mission Objective (*NEED to emphasize your end goal; split for 

suborbital and orbital?)  
5.1. Point out differences between suborbital and orbital  
5.2. Decide on a sensor  

5.2.1. Spatial resolution  
5.2.2. Bandwidth, spectral resolution  

6. Mission Planning – flight operations  
6.1. Plane installation  
6.2. Computing power and needs  
6.3. Flight line layout  
6.4. Diffuse sky-light consideration  
6.5. Viewing angle  
6.6. Outside of these standards for different environments 

7. Radiometric Calibration of Hyperspectral Imager 
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7.1. Vicarious calibration 
7.2. Biosphere calibration 

8. Geometric Calibration – GPS units 
9. Environmental Characterization (sensors needed for calibration and validation for 

ground truth) 
9.1. Validate radiometry  
9.2. Validate geophysical product  
9.3. Detailed measurements for environmental conditions – how detailed do you 

need to characterize an environment for your algorithm? 
10. Raw to Radiance Image Cubes 
11. Georeferencing 
12. Corrections  

12.1. Smile correction  
12.2. Striping 
12.3. Spectral smoothing  
12.4. Cloud masking  
12.5. Sun glint correction 
12.6. Atmospheric correction 
12.7. Outside of these standards for different environments 

13. Calculating Reflectance 
14. Guidance for Data Management Structure and Organization – need a data 

manager  
14.1. Consistent filename construct 
14.2. Good metadata and version control 
14.3. Making data easily discoverable outside of your organization (i.e. realm of 

big data, how to find useful data) 
14.4. Cloud computing vs. desktop computing (data to algorithms or algorithms to 

data) 
14.5. Data-sharing and open source movement for processing code and data  

14.5.1. I.e. NOAA to NCEI and GitHUB NOAA groups 
14.5.2. Coordinated sampling – multiplicative efficiencies 

15. Sources of Uncertainty  
15.1. Homogeneous vs. heterogeneity 
15.2. Outside of these standards for different environments 

16. Algorithm Considerations  
16.1. What to parameterize? What are the parameters? 

17. Summary  
17.1. Same concerns for orbital data 
 

ACT IN THE NEXT 1-2 YEARS 

Lead: Dr. Mario Tamburri, ACT, University of Maryland Center for Environmental  

Planning for Winter/Spring 2021 Hawaii Workshop 
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We think that the work ACT has been doing presents a highly productive area and 
exciting new approach to understanding coastal systems and we would love to continue 
the work. Our limitation is the uncertainty of funding availability. On June 1, 2020, we 
are entering the 5th year of cooperative agreement with NOAA. As we cannot rely on 
further funding at this point, we have decided to focus our efforts on completing two 
tasks: 
 

1. Best practices publication (discussed previously) 
2. Formal technology demonstration and verification. We envision a combination of 

technology demonstration and workshop with service providers demonstrating 
their technology imaging systems. We can contribute our expertise in 
conversations around how to best use these technologies. Lake Erie presents a 
good location as there is a lot of good background data on water quality 
characterization available. 

SUMMARY AND NEXT STEPS 
 
The recommendations emerging from this workshop include a list of next steps ACT will 
undertake: 
  

1. MANUSCRIPT: Methodological Considerations for Hyperspectral Remote 
Sensing of Benthic Habitats. The outline for the manuscript is included above.  

 
2. ACT’s hope is that a similar manuscript will be developed for HABS. ACT 

members will work with the participants who are working on HABS who were 
unable to join us during the workshop. 

 
3. BEST PRACTICES MANUSCRIPT: The outline for the manuscript is included 

in previous pages. ACT members, TAC members and participants can work on 
fleshing out the Best Practices manuscript outline over the next few months.  

 
4. VENDOR DEMONSTRATION: We will plan for a vendor demonstration of 

drone or airplane mounted, individual-user, hyperspectral imagers in the Great 
Lakes in summer 2021.  

 
5. WORKSHOP: We will plan for an in-person workshop in Hawaii winter 2021, 

should our world situation stabilize by that time. 
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